Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Val-Asp)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002405 AN003919 Stool global metabolite levels in peanut allergy (Part 2) Feces Human Peanut allergy Icahn School of Medicine at Mount Sinai Absolute Intensity
ST002471 AN004033 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling Feces Human Ulcerative colitis Broad Institute of MIT and Harvard Abundance
ST002472 AN004037 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Veillonella parvula cell and media profiling Bacterial cells Veillonella parvula Ulcerative colitis Broad Institute of MIT and Harvard Abundance
ST002247 AN003670 Microbiota and Health Study (Dhaka, Bangladesh) Feces Human Broad Institute of MIT and Harvard Abundances
ST003066 AN005022 Heritability of RBC metabolites: baseline correlation of metabolites and markers of RBC health and stability Erythrocytes Human University of Iowa area under curve
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub counts, height
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub counts, height
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub counts, height
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub counts, height
ST000508 AN000778 Metabolic Profiling of Date Palm Fruits Plant Date palm Weill Cornell Medicine in Qatar Counts per second
ST000867 AN001396 Metabolic Profiling of Date Palm Fruits (part II) Date palm fruit Date palm Weill Cornell Medicine in Qatar Counts per second
ST002009 AN003275 Metabolomics analysis of stress erythroid progenitors Stem cells Mouse Inflammation Pennsylvania State University Normalized peak area
ST002007 AN003270 Isotope tracing analysis of stress erythroid progenitors Cultured cells Mouse Inflammation Pennsylvania State University peak area
ST002011 AN003277 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002011 AN003278 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002011 AN003279 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003387 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003388 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003389 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003390 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST000230 AN000344 Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma Liver Human Cancer Osaka City University Peak area
ST000231 AN000346 Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma (part II) Liver Human Cancer Osaka City University Peak area
ST002505 AN004127 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China Peak area
ST003144 AN005159 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University peak height
ST001637 AN002676 A Metabolome Atlas of the Aging Mouse Brain Brain Mouse University of California, Davis Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST003160 AN005184 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human UC Davis Peak Height
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Intestine Human University of California, Davis Peak Height Intensity
ST001205 AN002007 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002007 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001008 AN001650 Multi-Platform Physiologic and Metabolic Phenotyping Reveals Microbial Toxicity (part II) Intestine Mouse Pennsylvania State University ppm
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco relative ion counts
ST001955 AN003180 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
  logo