Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Leu-Gly-Leu)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002460 AN004014 Paleamon metabolomics Shrimp organs Common prawn National Museum of Natural History counts
ST002977 AN004888 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan Peak area
ST002977 AN004890 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan Peak area
ST002787 AN004534 Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome Feces Human Cancer Wuhan University of Science and Technology Peak Area
ST002075 AN003382 Profiling of the human intestinal microbiome and bile acids under physiologic conditions using an ingestible sampling device (Part 2) Intestine Human UC Davis peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Intestine Human University of California, Davis Peak Height Intensity
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Apple Massachusetts Institute of Technology peak intensity
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Basil Massachusetts Institute of Technology peak intensity
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Garlic Massachusetts Institute of Technology peak intensity
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Lettuce Massachusetts Institute of Technology peak intensity
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Strawberry Massachusetts Institute of Technology peak intensity
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Tomato Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Apple Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Basil Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Garlic Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Lettuce Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Strawberry Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Tomato Massachusetts Institute of Technology peak intensity
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
  logo