Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Asn-Asp)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002505 AN004126 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China Peak area
ST002787 AN004535 Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome Feces Human Cancer Wuhan University of Science and Technology Peak area
ST002926 AN004798 Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression Blood Plasmodium falciparum Malaria Monash University peak height
ST003144 AN005159 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University peak height
ST000403 AN000642 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000539 AN000818 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000546 AN000832 Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST001033 AN001694 Determination of mode of action of anti-malalrial drugs using untargeted metabolomics Cultured cells Plasmodium falciparum Malaria Monash University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST003179 AN005222 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST003565 AN005858 Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells Cultured cells Plasmodium falciparum Malaria Monash University Peak height
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human UC Davis Peak Height
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Intestine Human University of California, Davis Peak Height Intensity
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST002094 AN003422 Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) Feces Human Irritable bowel syndrome Mayo Clinic raw intensity
ST002106 AN003445 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002108 AN003448 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco relative ion counts
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University Signal Intensity
ST001304 AN002172 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University Signal Intensity
  logo