Summary of Study ST003736

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR002322. The data can be accessed directly via it's Project DOI: 10.21228/M8GV64 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003736
Study TitleThe Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass (Rumex patientia L.× Rumex tianschanicus A. LOS)
Study SummaryEdible grass (Rumex patientia L.× Rumex tianschanicus A. LOS), a perennial herbaceous plant from the Polygonaceae family, boasts a high protein content and rapid growth rate, making it a promising solution to feed shortages as a forage protein source. In this study, we utilized the PacBio sequencing platform and integrated methods including Hi-C to achieve a chromosomal-scale assembly of the R. patientia genome. The assembled genome spans 2.19 Gb with an N50 of 18.84 Mb, and 93.61% (2.05 Gb) of the assembly has been allocated to 30 pseudochromosomes. Comparative genomic analysis has revealed significant expansion of gene families involved in nitrogen metabolism and D-glutamine and D-glutamate metabolism pathways, which are responsible for the plant's strong nitrogen utilization capabilities and high protein content. Additionally, expansions in gene families associated with the Wnt signaling pathway, ubiquitin-mediated proteolysis, Toll and Imd signaling pathways, TGF-β signaling pathway, protein processing in the endoplasmic reticulum, photosynthesis-antenna proteins, circadian rhythm, and cell cycle pathways are closely related to the rapid growth and development of R. patientia. We have also identified the rhizosphere microbiome of R. patientia and, by integrating metabolomic data from root tissues and soil, found that during rapid growth phases, the plant secretes various apigenin-like compounds into the soil, enhancing the symbiotic nitrogen-fixing capabilities and potentially providing nitrogen sources to the leaves through symbiotic nitrogen fixation. Our research provides crucial insights into the genetic basis of R. patientia 's utility as a forage protein source.
Institute
Hunan Agricultural University
Last Nameli
First Namezhu
Address1 Nongda Road, Changsha City, Hunan Province, Changsha, Hunan, 410128, China
Emaillizhu@stu.hunau.edu.cn
Phone15211045071
Submit Date2025-02-11
Raw Data AvailableYes
Raw Data File Type(s)wiff
Analysis Type DetailLC-MS
Release Date2025-02-21
Release Version1
zhu li zhu li
https://dx.doi.org/10.21228/M8GV64
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Treatment:

Treatment ID:TR003877
Treatment Summary:Immediately post-collection, samples were submerged in liquid nitrogen to halt metabolic activities and maintain biochemical integrity. Each sample was subsequently finely ground in liquid nitrogen, and the resulting homogenized tissue was divided into aliquots: one for RNA extraction, another for protein isolation, and additional portions for Untargeted metabolomics analysis. This meticulous division guarantees consistent and comparative datasets across transcriptomic, proteomic, and metabolomic analyses.
  logo