Summary of Study ST002446

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001577. The data can be accessed directly via it's Project DOI: 10.21228/M8VD8T This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002446
Study TitleUntargeted metabolomics of miR-142 WT vs KO CML cells
Study SummaryMiR-142 is dynamically expressed and plays a regulatory role in hematopoiesis. Based on the simple observation that miR-142 levels are significantly lower in CD34+CD38- cells from blast crisis (BC) chronic myeloid leukemia (CML). CML patients compared with chronic phase (CP) CML patients (p=0.002), we hypothesized that miR-142 deficit plays a role in BC transformation. To test this hypothesis, we generated a miR-142 KO BCR-ABL (i.e., miR-142−/−BCR-ABL) mouse by crossing a miR-142−/− mouse with a miR-142+/+BCR-ABL mouse. While the miR-142+/+BCR-ABL mice developed and died of CP CML, the miR-142−/−BCR-ABL mice developed a BC-like phenotype in the absence of any other acquired gene mutations and died significantly sooner than miR-142+/+BCR-ABL CP controls (p=0.001). Leukemic stem cell (LSC)-enriched Lineage-Sca-1+c-Kit+ cells (LSKs) from diseased miR-142−/−BCR-ABL mice transplanted into congenic recipients, recapitulated the BC features thereby suggesting stable transformation of CP-LSCs into BC-LSCs in the miR-142 KO CML mouse. Single cell (sc) RNA-seq profiling showed that miR-142 deficit changed the cellular landscape of the miR-142−/−BCR-ABL LSKs compared with miR-142+/+BCR-ABL LSKs with expansion of myeloid-primed and loss of lymphoid-primed factions. Bulk RNA-seq analyses along with unbiased metabolomic profiling and functional metabolic assays demonstrated enhanced fatty acid β-oxidation (FAO) and oxidative phosphorylation (OxPhos) in miR-142−/−BCR-ABL LSKs vs miR-142+/+BCR-ABL LSKs. MiR-142 deficit enhanced FAO in miR-142−/−BCR-ABL LSKs by increasing the expression of CPT1A and CPT1B, that controls the cytosol-to-mitochondrial acyl-carnitine transport, a critical step in FAO. MiR-142 deficit also enhanced OxPhos in miR-142−/−BCR-ABL LSKs by increasing mitochondrial fusion and activity. As the homeostasis and activity of LSCs depend on higher levels of these oxidative metabolism processes, we then postulate that miR-142 deficit is a potentially druggable target for BC-LSCs. To this end, we developed a novel CpG-miR-142 mimic oligonucleotide (ODN; i.e., CpG-M-miR-142) that corrected the miR-142 deficit and alone or in combination with a tyrosine kinase inhibitor (TKI) significantly reduced LSC burden and prolonged survival of miR-142−/−BCR-ABL mice. The results from murine models were validated in BC CD34+CD38- primary blasts and patient-derived xenografts (PDXs). In conclusion, an acquired miR-142 deficit sufficed in transforming CP-LSCs into BC-LSCs, via enhancement of bioenergetic oxidative metabolism in absence of any additional gene mutations, and likely represent a novel therapeutic target in BC CML.
Institute
Translational Genomics Research Institute
Last NameMansfield
First NameKrystine
Address445 N 5th St, Phoenix, AZ, 85004, USA
Emailkgarcia@tgen.org
Phone602-343-8832
Submit Date2023-01-13
Num Groups2
Total Subjects18
Num Males9
Num Females9
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2023-08-08
Release Version1
Krystine Mansfield Krystine Mansfield
https://dx.doi.org/10.21228/M8VD8T
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP002541
Sampleprep Summary:Metabolites extraction was performed by adding chilled methanol: acetonitrile: water (2:1:1, v/v/v)) to the cell pellet of pooled Lin-c-kit+ cells followed by three freeze-thaw cycles. The lysed cells were precipitated by centrifugation at 15,000 rpm for 10 min at 4 °C and metabolites in the supernatant were vacuum concentrated and subjected to LC-MS analysis.
  logo