Summary of Study ST002324

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR001490. The data can be accessed directly via it's Project DOI: 10.21228/M84D89 This work is supported by NIH grant, U2C- DK119886.


This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002324
Study TitleExploration of age-dependent changes of phospholipid profiles in C. elegans depleted of tif-IA and ncl-1
Study SummaryAnalysis of phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylserines and phosphatidylglycerols in young (d2), middle age (d6) and old age (d12) C. elegans as well as animals with tif-IA or ncl-1 knockdown.
University of Innsbruck
DepartmentMichael Popp Institute
Last NameKoeberle
First NameAndreas
AddressMitterweg 24, Innsbruck, Tyrol, 6020, Austria
Phone+43 512 507 57903
Submit Date2022-10-12
Raw Data AvailableYes
Raw Data File Type(s)wiff
Analysis Type DetailLC-MS
Release Date2022-11-18
Release Version1
Andreas Koeberle Andreas Koeberle application/zip

Select appropriate tab below to view additional metadata details:


Project ID:PR001490
Project DOI:doi: 10.21228/M84D89
Project Title:Reducing the metabolic burden of rRNA synthesis promotes healthy longevity
Project Summary:Ribosome biogenesis is an anabolic process driven by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). While Pol I activity was previously linked to longevity, the underlying mechanisms were not studied beyond effects on protein translation and downstream proteostasis. Here we used multi-omics and functional tests to show that curtailment of Pol I activity preserves mitochondrial function and lowers ATP expenditure, thereby promoting longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis also improved longevity and energy homeostasis in Drosophila melanogaster and human cells, respectively. Conversely, the enhancement of pre-rRNA synthesis boosted growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extended lifespan more potently than translational repression, and retained its geroprotective effects when initiated late in life, showcasing moderation of Pol I activity as an effective longevity treatment not limited by aging.
Institute:University of Innsbruck
Department:Michael Popp Institute
Last Name:Koeberle
First Name:Andreas
Address:Mitterweg 24, Innsbruck, Tyrol, 6020, Austria
Phone:+43 512 507 57903
Funding Source:Leibniz Association, Thüringer Aufbaubank (2019 FGR 0082), Free State of Thuringia (RegenerAging—FSU-I-03/14), Carl-Zeiss-Stiftung (IMPULS), Phospholipid Research Center (AKO-2019-070/2-1)
Contributors:Samim Sharifi, Finja Witt, André Gollowitzer, Oliver Werz, Holger Bierhoff, Maria Ermolaeva