Summary of Study ST002324
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001490. The data can be accessed directly via it's Project DOI: 10.21228/M84D89 This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.
Study ID | ST002324 |
Study Title | Exploration of age-dependent changes of phospholipid profiles in C. elegans depleted of tif-IA and ncl-1 |
Study Summary | Analysis of phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylserines and phosphatidylglycerols in young (d2), middle age (d6) and old age (d12) C. elegans as well as animals with tif-IA or ncl-1 knockdown. |
Institute | University of Innsbruck |
Department | Michael Popp Institute |
Last Name | Koeberle |
First Name | Andreas |
Address | Mitterweg 24, Innsbruck, Tyrol, 6020, Austria |
andreas.koeberle@uibk.ac.at | |
Phone | +43 512 507 57903 |
Submit Date | 2022-10-12 |
Raw Data Available | Yes |
Raw Data File Type(s) | wiff |
Analysis Type Detail | LC-MS |
Release Date | 2022-11-18 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Project:
Project ID: | PR001490 |
Project DOI: | doi: 10.21228/M84D89 |
Project Title: | Reducing the metabolic burden of rRNA synthesis promotes healthy longevity |
Project Summary: | Ribosome biogenesis is an anabolic process driven by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). While Pol I activity was previously linked to longevity, the underlying mechanisms were not studied beyond effects on protein translation and downstream proteostasis. Here we used multi-omics and functional tests to show that curtailment of Pol I activity preserves mitochondrial function and lowers ATP expenditure, thereby promoting longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis also improved longevity and energy homeostasis in Drosophila melanogaster and human cells, respectively. Conversely, the enhancement of pre-rRNA synthesis boosted growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extended lifespan more potently than translational repression, and retained its geroprotective effects when initiated late in life, showcasing moderation of Pol I activity as an effective longevity treatment not limited by aging. |
Institute: | University of Innsbruck |
Department: | Michael Popp Institute |
Last Name: | Koeberle |
First Name: | Andreas |
Address: | Mitterweg 24, Innsbruck, Tyrol, 6020, Austria |
Email: | andreas.koeberle@uibk.ac.at |
Phone: | +43 512 507 57903 |
Funding Source: | Leibniz Association, Thüringer Aufbaubank (2019 FGR 0082), Free State of Thuringia (RegenerAging—FSU-I-03/14), Carl-Zeiss-Stiftung (IMPULS), Phospholipid Research Center (AKO-2019-070/2-1) |
Contributors: | Samim Sharifi, Finja Witt, André Gollowitzer, Oliver Werz, Holger Bierhoff, Maria Ermolaeva |