Summary of Study ST002315

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001484. The data can be accessed directly via it's Project DOI: 10.21228/M8WT54 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002315
Study TitleDifferential requirements for mitochondrial electron transport chain components in the adult murine liver - in vivo glucose tracing
Study SummaryWild-type and knockout mice (Ndufa9 and Cox10) were implanted with a jugular vein catheter and infused with [U-13C] glucose for 3 hours. Plasma and liver tissue was collected and analyzed via GCMS.
Institute
The University of Texas Southwestern Medical Center at Dallas
DepartmentChildren's Research Institute
LaboratoryPrashant Mishra
Last NameLesner
First NameNicholas
Address6000 Harry Hines BLVD
Emailnicholas.lesner@pennmedicine.upenn.edu
Phone2146483784
Submit Date2022-08-23
Num Groups8
Total Subjects60
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailGC-MS
Release Date2022-11-02
Release Version1
Nicholas Lesner Nicholas Lesner
https://dx.doi.org/10.21228/M8WT54
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001484
Project DOI:doi: 10.21228/M8WT54
Project Title:Differential requirements for mitochondrial electron transport chain components in the adult murine liver
Project Summary:Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans, and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I (cI) is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Metabolomic analysis suggests that the electron transfer flavoprotein complex constitutes a major route for electron entry into the hepatic ETC. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.
Institute:The University of Texas Southwestern Medical Center at Dallas
Department:Children's Research Institute
Laboratory:Prashant Mishra
Last Name:Lesner
First Name:Nicholas
Address:6000 Harry Hines BLVD
Email:nicholas.lesner@pennmedicine.upenn.edu
Phone:2146483784
  logo