Summary of Study ST001966

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR001252. The data can be accessed directly via it's Project DOI: 10.21228/M8W423 This work is supported by NIH grant, U2C- DK119886.


This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001966
Study TitleNMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram Positive Bacteria
Study TypeNMR Hydrophilic Metabolomics
Study SummaryMultivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both gram-positive and gram-negative bacteria. Nuclear Magnetic Resonance (NMR) metabolomics is an important method for studying resistance development in bacteria since it is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. Determine the likely metabolic differences between antimicrobially challenged and unchallenged growth and wild type and antimicrobially mutated Bacillus cereus (B. cereus) samples by using NMR hydrophilic metabolomics. Proton (1H) NMR hydrophilic metabolite analysis was conducted using B. cereus wild type and B. cereus that was mutated with C16-DABCO and mannose functionalized poly(amidoamine) dendrimers (DABCOMD). Both the wild type and the mutated sample types were grown in low levels of DABCOMD (challenged samples) or without the addition of DABCOMD to the growth media (unchallenged samples) for sample collection at the mid log and stationary phases and for growth curve procurement. Hierarchical clustering of only the challenged sample type showed that both the stationary phase sample types (mutant and wild type) clustered together while the both the mid log phase sample types were distinct. Hierarchical clustering of the unchallenged samples showed complete separation of all sample types. There were statistically significant (p-value and fold change) changes in the concentrations of metabolites in both energy related pathways and peptidoglycan synthesis between all sample types, especially with mutants and especially the challenged sample types have more N-acetylglucosamine (as much as a 94.2-fold increase). The mid log phase sample types showed a larger difference between sample types than their stationary phase counter parts. The challenged and unchallenged mutant samples showed a larger difference between sample types in comparison to the differences between the challenged and unchallenged wild type sample types. There was a larger metabolite difference when comparing the challenged mutant samples to the challenged wild type samples than when comparing the unchallenged mutant samples to the unchallenged wild type samples. The metabolomic analysis of wild type and multivalent DABCOMD mutated B. cereus under both challenged and unchallenged conditions indicated that the mutants, especially the challenged mutants, are likely changing their peptidoglycan layer to protect themselves from the high positive charge on the membrane disrupting DABCOMD. This membrane fortification most likely led to the slow growth curve of the mutated and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for these changes to occur as well as to the decreased diffusion of nutrients across the membrane.
Montana State University
DepartmentChemistry and Biochemistry
LaboratoryDr. Mary Cloninger
Last NameAries
First NameMichelle
Address103 Chemistry and Biochemistry Building
Submit Date2021-11-09
Raw Data AvailableYes
Raw Data File Type(s)fid
Analysis Type DetailNMR
Release Date2022-11-10
Release Version1
Michelle Aries Michelle Aries application/zip

Select appropriate tab below to view additional metadata details:


NMR ID:NM000218
Analysis ID:AN003204
Instrument Name:Bruker Avance III 600 MHz NMR
Instrument Type:FT-NMR
NMR Experiment Type:1D-1H
Spectrometer Frequency:600 MHz
NMR Probe:5 mm triple resonance (1H, 15N, 13C) liquid-helium cooled TCI NMR CryoProbe