Summary of Study ST001827
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001154. The data can be accessed directly via it's Project DOI: 10.21228/M8J97M This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
Study ID | ST001827 |
Study Title | The pregnancy metabolome from a multi-ethnic pregnancy cohort |
Study Summary | The PRogramming of Intergenerational Stress Mechanisms (PRISM) study is an urban, ethnically diverse pregnancy cohort that was designed to study a range of chemical and non-chemical stressors in relation to maternal health, pregnancy outcomes, and child development. Pregnant women were enrolled from Boston and New York City hospitals and affiliated prenatal clinics beginning in 2011. Eligibility criteria included English or Spanish-speaking, over 18 years of age at enrollment, and singleton pregnancy. Exclusion criteria included HIV+ status or self-reported drinking ≥7 alcoholic drinks per week before pregnancy or any alcohol after pregnancy recognition |
Institute | Icahn School of Medicine at Mount Sinai |
Last Name | Wright |
First Name | Rosalind J |
Address | 5 E.98st FL 10th floor |
rosalind.wright@mssm.edu | |
Phone | (212) 241-5287 |
Submit Date | 2021-06-10 |
Analysis Type Detail | LC-MS |
Release Date | 2021-06-28 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Combined analysis:
Analysis ID | AN002963 |
---|---|
Analysis type | MS |
Chromatography type | HILIC |
Chromatography system | Thermo Scientific Q-Exactive |
Column | SeQuant ZIC-HILIC (150 x 4.6mm,3.5um) |
MS Type | ESI |
MS instrument type | Orbitrap |
MS instrument name | Thermo Q Exactive Orbitrap |
Ion Mode | UNSPECIFIED |
Units | pmoles/l |
MS:
MS ID: | MS002753 |
Analysis ID: | AN002963 |
Instrument Name: | Thermo Q Exactive Orbitrap |
Instrument Type: | Orbitrap |
MS Type: | ESI |
MS Comments: | Untargeted metabolomics analysis was conducted on 100µl of serum at Metabolon, Inc (Durham, NC, USA) with ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS). The method utilized an ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. One aliquot was analyzed using acidic positive ion conditions, chromatographically optimized for more hydrophilic compounds; the extract compound was gradient eluted from a C18 column using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was analyzed with the prior approach but it was chromatographically optimized for more hydrophobic compounds and operated at an overall higher organic content. A third aliquot was analyzed using basic negative ion optimized conditions using a separate dedicated C18 column. The basic extracts were gradient eluted from the column using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization following elution from a HILIC column using a gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic exclusion. The scan range between methods covered 70-1000 m/z. Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and software. Peaks were quantified using area-under-the-curve. Batch adjustment to correct variation resulting from instrument inter-day tuning differences was performed for each compound in run-day blocks by dividing by the median of the values for the experimental samples for each instrument run day, then multiplying these values by the original median. In one serum sample with a lower volume (65µl instead of 80µl), metabolite intensities were scaled accounting for the volume of serum available, under the assumption that metabolite signal intensities scale linearly with the sample volume. |
Ion Mode: | UNSPECIFIED |