Summary of Study ST001004
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000679. The data can be accessed directly via it's Project DOI: 10.21228/M8X10M This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.
Study ID | ST001004 |
Study Title | Denver Asthma Panel Study-CHEAR Ancillary Study |
Study Type | Untargeted high-resolution mass spectrometry profiling |
Study Summary | Urban environments remain a poorly understood toxic environment for children with asthma, where improved exposure characterization and estimation of exposurehealth outcome relationships are clearly needed. The goal of this project is to investigate the interactions between relevant environmental exposures and asthma severity in a year-long longitudinal study of urban children with asthma. Environmental and clinical samples are being collected at 3 seasonal visits. Using these samples, we will measure the effects of multiple relevant exposures (environmental tobacco smoke (ETS), polycyclic aromatic hydrocarbons (PAHs), phthalates, and volatile organic compounds (VOCs)) on biological responses (metabolomics, oxidative stress, inflammatory markers, and endocannabinoids) and asthma outcomes. Our overall hypothesis is that relevant environmental exposures and their interactions drive disease severity in urban children with asthma. We will test this hypothesis by investigating the following aims: Aim 1: To investigate how environmental exposures (ETS, PAHs, phthalates, and VOCs) and their interactions contribute to asthma severity in urban children. Aim 2: To determine if environmental exposures in children with asthma are associated with changes in in biological responses (metabolomics, oxidative stress, inflammatory markers, and endocannabinoids). Aim 3: To determine which biological responses mediate the relationships between environmental exposures and asthma severity. Aim 4: To compare environmental exposures and biological responses in asthmatic and non-asthmatic children |
Institute | Emory University |
Department | School of Medicine |
Laboratory | Clincal Biomarkers Laboratory |
Last Name | Uppal |
First Name | Karan |
Address | 615 Michael St. Ste 225, Atlanta, GA, 30322, USA |
kuppal2@emory.edu | |
Phone | (404) 727 5027 |
Submit Date | 2018-06-21 |
Total Subjects | 66 |
Study Comments | Both CHEAR and Clinical Biomarker Laboratory pooled plasma samples were used for quality control. Study specific sample pools were not created |
Raw Data Available | Yes |
Raw Data File Type(s) | raw(Thermo) |
Chear Study | Yes |
Analysis Type Detail | LC-MS |
Release Date | 2021-08-31 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Combined analysis:
Analysis ID | AN001714 | AN001715 |
---|---|---|
Analysis type | MS | MS |
Chromatography type | HILIC | Reversed phase |
Chromatography system | Thermo Dionex Ultimate 3000 | Thermo Dionex Ultimate 3000 |
Column | Waters XBridge BEH Amide XP HILIC (50 x 2.1mm,2.5um) with Thermo Accucore HILIC guard | Higgins endcapped C18 stainless steel (50 x 2.1mm,3um),Product #TS-0521-C183; Thermo Accucore C18 guard with holder,Product #17126-014005 |
MS Type | ESI | ESI |
MS instrument type | Orbitrap | Orbitrap |
MS instrument name | Thermo Q Exactive HF hybrid Orbitrap | Thermo Q Exactive HF hybrid Orbitrap |
Ion Mode | POSITIVE | NEGATIVE |
Units | Peak Area | Peak Area |
Chromatography:
Chromatography ID: | CH001210 |
Chromatography Summary: | The HILIC column is operated parallel to reverse phase column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6-port switching valves. During operation of HILIC separation method, the MS is operated in positive ion mode and 10 microliters of sample is injected onto the HILIC column while the reverse phase column is flushing with wash solution. Flow rate is maintained at 0.35 mL/min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 2% formic acid (v/v) in LC-MS grade water. Initial mobile phase conditions are 22.5% A, 75% B, 2.5% C hold for 1.5 min, with linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min, resulting in a total analytical run time of 5 min. During the flushing phase (reverse phase analytical separation), the HILIC column is equilibrated with a wash solution of 77.5% A, 20% B, 2.5% C. |
Methods ID: | 2% formic acid in LC-MS grade water |
Methods Filename: | 20160920_posHILIC120kres5min_ESI_c18negwash.meth |
Chromatography Comments: | Triplicate injections for each chromatography mode |
Instrument Name: | Thermo Dionex Ultimate 3000 |
Column Name: | Waters XBridge BEH Amide XP HILIC (50 x 2.1mm,2.5um) with Thermo Accucore HILIC guard |
Column Temperature: | 60C |
Flow Gradient: | A= water, B= acetontrile, C= 2% formic acid in water; 22.5% A, 75% B, 2.5% C hold for 1.5 min, linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min |
Flow Rate: | 0.35 mL/min for 1.5 min; linear increase to 0.4 mL/min at 4 min, hold for 1 min |
Sample Injection: | 10 uL |
Solvent A: | 100% water |
Solvent B: | 100% acetonitrile |
Analytical Time: | 5 min |
Sample Loop Size: | 15 uL |
Sample Syringe Size: | 100 uL |
Chromatography Type: | HILIC |
Chromatography ID: | CH001211 |
Chromatography Summary: | The C18 column is operated parallel to the HILIC column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6- port switching valves. During operation of the C18 method, the MS is operated in negative ion mode and 10 μL of sample is injected onto the C18 column while the HILIC column is flushing with wash solution. Flow rate is maintained at 0.4 mL/min until 1.5 min, increased to 0.5 mL/min at 2 min and held for 3 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 10mM ammonium acetate in LC-MS grade water. Initial mobile phase conditions are 60% A, 35% B, 5% C hold for 0.5 min, with linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3.5 min, resulting in a total analytical run time of 5 min. During the flushing phase (HILIC analytical separation), the C18 column is equilibrated with a wash solution of 0% A, 95% B, 5% C until 2.5 min, followed by an equilibration solution of 60% A, 35% B, 5% C for 2.5 min. |
Methods ID: | 10mM ammonium acetate in LC-MS grade water |
Methods Filename: | 20160920_negC18120kres5min_ESI_HILICposwash.meth |
Chromatography Comments: | Triplicate injections for each chromatography mode |
Instrument Name: | Thermo Dionex Ultimate 3000 |
Column Name: | Higgins endcapped C18 stainless steel (50 x 2.1mm,3um),Product #TS-0521-C183; Thermo Accucore C18 guard with holder,Product #17126-014005 |
Column Temperature: | 60C |
Flow Gradient: | A= water, B= acetontrile, C= 10mM ammonium acetate in water; 60% A, 35% B, 5% C hold for 0.5 min, linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3 min |
Flow Rate: | 0.4 mL/min for 1.5 min; linear increase to 0.5 mL/min at 2 min held for 3 min |
Sample Injection: | 10 uL |
Solvent A: | 100% water |
Solvent B: | 100% acetonitrile |
Analytical Time: | 5 min |
Sample Loop Size: | 15 uL |
Sample Syringe Size: | 100 uL |
Chromatography Type: | Reversed phase |