Summary of Study ST000637

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000457. The data can be accessed directly via it's Project DOI: 10.21228/M8060Z This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)
Study IDST000637
Study TitleTCA Cycle Metabolites of Dietary Salt Effects on Blood Pressure in Rat Urine and Kidney Tissue (part X)
Study SummaryWe propose to analyze kidney tissue extract and urine samples from SS and SS.Fh1+ transgenic rats in addition to the analysis of urine samples from the DASH2 trial. The analysis of the rat samples will be highly valuable for several reasons. First, it will to take the findings in human subjects back to animal models and prepare us for further mechanistic studies. We hypothesize at least some of the effects of dietary salt intake on metabolite profiles in human will be recapitulated or altered in the SS rat. If this is confirmed, we will have a highly informative animal model ready for mechanistic studies in which we can investigate the functional contribution of specific metabolites to hypertension and the mechanisms involved. Second, the rat study will allow us to take advantage of a new and unique transgenic SS.Fh1+ model that we recently developed that overexpresses fumarase (Fh1) on the genetic background of the SS rat. Fumarase is a TCA cycle enzyme previously implicated in salt-induced hypertension in SS rats.
Institute
Mayo Clinic
Last NameLiang
First NameMingyu
AddressMedical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226
Emailmliang@mcw.edu
Phone414-955-8539
Submit Date2017-06-23
Analysis Type DetailGC-MS
Release Date2019-07-17
Release Version1
Mingyu Liang Mingyu Liang
https://dx.doi.org/10.21228/M8060Z
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN000969
Analysis type MS
Chromatography type GC
Chromatography system Agilent 7890B
Column Agilent HP5-MS (30m × 0.25mm, 0.25 um)
MS Type EI
MS instrument type Single quadrupole
MS instrument name Agilent 5975C
Ion Mode POSITIVE
Units urine uM and Tissue nnol/vial
  logo